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These are the notes for the NCG seminar, Spring 2019, of UH Manoa. This semester
is devoted to the paper of Špakula, Tikuisis and Zhang on quasi-locality. These are
the references:

• Relative commutant pictures of Roe algebras, Jan Špakula and Aaron
Tikuisis [66],
• Quasi-locality and property A, Jan Špakula and Jiawen Zhang [77].

1. Approximation of band dominated operators

In the following, X denotes a discrete metric space (e.g. Z) with bounded geometry.
This last requirement means that, for each positive number r, the cardinality of the
r-balls is uniformly bounded, i.e. the number Nr = supx∈X |B(x, r)| is finite. For
T ∈ B(`2X), define the matrix coefficients of T by

Txy = 〈δx, T δy〉 ∀x, y ∈ X.

Think of T as a matrix (Txy) indexed by X. The propagation of such a T will then
be the (possibly infinite) number

prop(T ) = inf{d(x, y) | Txy 6= 0}.

If the propagation of T is finite, we will say that T is bounded or has finite propaga-
tion. Band dominated operators are the norm limits of bounded operators. They
form a C∗-algebra C∗u(X), called the uniform Roe algebra of X.

Questions:
(1) If T is band dominated, how can we approximate it by bounded operators?
(2) How can we recognize when T is band dominated?

The two next numbers will give partial answers to these two questions. Or at least
try to explain why they are not trivial.
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2. Approximation by bounded operators

For T ∈ B(`2X) band dominated, define T (n) to be the operator with matrix
coefficients

T (n)
xy =

{
Txy if d(x, y) ≤ n
0 otherwise.

We hope that Tn converges to T in norm as n goes to ∞.

As an example, take X = Z with its canonical metric (given by the absolute value).
Each f ∈ C(S1) gives rise to a multiplication operator Mf ∈ B(L2(S1)), and by
Fourier transform to a convolution operator Tf ∈ B(`2Z). It is the operator of norm
‖f‖∞ with matrix coefficients (Tf )xy proportional to f̂(x− y).
In particular, if f =

∑N
n=−N λnz

n is a trigonometric polynomial, then Tf is bounded
as f̂(n) = 0 for |n| > N . This ensures that every Tf is band dominated, as every
continuous functions is a uniform limit of trigonometric polynomials. For such
operators, our naive guess

“ T (n)
f →‖‖ Tf ”

is equivalent to

“
N∑

n=−N
f̂(n)zn →‖‖∞ f ”

which is false. It is even worse: one can have ‖Tf‖ = 1 while ‖T (n)
f ‖ goes to ∞

(Baire category argument, see [88] p. 167) and this implies (by uniform boundedness
theorem) that (T (n)

f )n does not even converges to Tf in the strong operator topology.

3. Weakly band dominated operators

Definition 3.1. An operator T ∈ B(`2X) has (r, ε)-propagation if for every subsets
A,B ⊂ X such that d(A,B) > r,

‖χATχB‖ < ε.

T is weakly band dominated if, for every ε > 0, there is r > 0 such that T has
(r, ε)-propagation.

Note: Bounded implies weakly band dominated, therefore, weakly band dominated
being a closed condition, band dominated implies weakly band dominated, as the
intuition suggests.

Question: Does weakly bounded implies bounded?

This was claimed without proof for spaces with finite asymptotic dimension by J.
Roe ca ’97, and actually proved

• by Rabinovich-Roch-Silbermann in ’00 for X = Zn [44];
• by Špakula-Tikuisis in ’16 for finite asymptotic dimension (and a bit more,
finite decomposition complexity spaces for the curious reader) [66];
• by Špakula-Zhang in ’18 for spaces with property A [77].

We have no counterexamples to this date (25 jan. 2019).

Theorem 3.2 (Folklore). The following are equivalent:
(1) T is weakly band dominated;
(2) for every ε > 0, there exists δ > 0 such that if f ∈ l∞(X)1 and Lip(f) ≤ δ

then ‖[T, f ]‖ < ε.
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Proof. Let us start with the reverse implication. Say d(A,B) > r, then there
exists f ∈ l∞(X)1 satisfying 0 ≤ f ≤ 1, f|A = 1, f|B = 0 and Lip(f) ≤ 1

r . Then
fχA = χA and fχB = 0 so that

χATχB = χA[f, T ]χB

and ‖χATχB‖ ≤ 1
r .

Remark: the function
f(x) = max{0, 1− d(x,A)

r
}

does the job. The Lipschitz constant is smaller than 1
r because of the easy inequality

|d(x,A)− d(y,A)| ≤ d(x, y) ∀x, y ∈ X,A ⊂ X.
�

4. Characterizing membership in the Roe algebra

The main goal of this section is to prove the following result, after the work of
Špakula and Tikuisis.

Theorem 4.1. Consider the following properties of an operator b ∈ B(`2X).
(1) lim ‖[b, fn]‖ = 0 for every very lipschitz sequence (fn) ⊂ Cb(X);
(2) b is quasi local;
(3) [b, g] ∈ K(`2X) for every Higson function g ∈ Ch(X);
(4) b ∈ C∗u(X).

Then (4) =⇒ (1) ⇐⇒ (2) ⇐⇒ (3). Moreover if X has finite asymptotic
dimension, then (4) is equivalent to all of these.

Some remarks are in order.
• These results grew out of a question of John Roe, who asked about the
implication (2) =⇒ (4) when X has finite asymptotic dimension (FAD).
• The theorem in [66] is better: (2) =⇒ (4) when X has straight finite
decomposition complexity (FDC), which is much weaker than FAD. For
instance, Z o Z has FDC but not FAD, while FAD always implies FDC.
• There is a follow up paper which shows (2) =⇒ (4) when X has property
A, an even weaker condition. This last result will be treated in a following
number.

Let us understand the conditions better.

Very Lipschitz condition. Recall that a function f is Lipschitz if its Lipschitz
modulus

Lip(f) = sup
x 6=y

|f(x)− f(y)|
d(x, y)

is finite. More precisely, a function f is L-Lipschitz if Lip(f) ≤ L ⇐⇒ |f(x) −
f(y)| ≤ Ld(x, y), ∀x 6= y.

A sequence (fn) ⊂ l∞(X) is very Lipschitz if
• the sequence is uniformly bounded: ∃C > 0 such that ‖fn‖ ≤ C;
• limLip(fn) = 0.

With this notation, the condition (1) is equivalent to
∀ε > 0,∃L > 0 s.t. if ‖f‖ ≤ 1 and Lip(f) ≤ L then ‖[b, f ]‖ < ε.

Indeed, one direction is obvious, and suppose there exists ε > 0 such that for every
L > 0 there is a f ∈ l∞(X) with ‖f‖ ≤ 1, Lip(f) ≤ L and ‖[b, f ]‖ ≥ ε. Take L = 1

n
3



to get a very Lipschitz sequence (fn) with ‖[b, f ]‖ ≥ ε > 0, which contradicts (1).

Quasi-locality. Recall that b ∈ B(`2X) is quasi-local iff ∀ε > 0, b has finite
ε-propagation, iff ∀ε > 0,∃r > 0 such that ∀f, g ∈ l∞(X), if ‖f‖, ‖g‖ ≤ 1 and
d(supp(f), supp(g)) ≥ r then ‖fbg‖ < ε.

Let us introduce the space
CL,ε = {a ∈ B(`2X) : ‖[a, f ]‖ < ε ∀f ∈ l∞(X)1 s.t. Lip(f) ≤ L}.

What was said above reduces to the fact that the algebra of quasi-local operators is
exactly ⋂

ε>0

⋃
L>0

CL,ε.

Higson functions. A function g ∈ l∞(X) is said to be a Higson function, algebra
denoted by Ch(X) iff ∀ε > 0,∀r > 0, there exists a finite subset F ⊂ X such that if
x, y /∈ F and d(x, y) ≤ r, then |g(x)− g(y)| ≤ ε.

4.1. Roe’s question on conditions (2) and (4). (4) =⇒ (2) is not difficult.
In short, quasi-locality is a closed condition, which is obviously satisfied by finite
propagation bounded operators.

Closed condition If ∀δ > 0, there is a quasi-local operator b′ such that ‖b− b′‖ < δ,
then b is quasi-local.

Finite propagation operators are quasi-local If ξ ∈ `2(X) is finitely supported and
prop(b) ≤ r, then supp(bξ) ⊂ Nr(supp(ξ)), and so if d(supp(f), supp(g)) > r, then
gbf = 0.

(4) =⇒ (1) is again not too hard.
Condition (1) is closed and is satisfied by finite propagation operators. This follows
from elementary estimates and a calculation of the kernel of the commutator.
Lemma 4.2. If b ∈ B(`2X) such that |b(x, y)| ≤ C and prop(b) ≤ r, then ‖b‖ ≤
CNr

Lemma 4.3. Let b as above and f ∈ l∞(X). The kernel of [b, f ] is
[b, f ](x, y) = b(x, y)(f(x)− f(y))).

Now (4) =⇒ (1) follows: if prop(b) ≤ r, then
prop([b, f ]) ≤ r and |[b, f ](x, y)| ≤ CLip(f)r

so that also ‖[b, f ]‖ ≤ CrNrLip(f). As for the lemmas, the first point reduces to:

|bξ(x)| ≤
∑

y∈Br(x)

|b(x, y)| |ξ(y)|

≤ CN
1
2
r ‖ξ|Br(x)‖2 by CBC.

=⇒ ‖bξ‖22 =
∑
x

|bξ(x)|2

≤
∑
x

C2Nr‖ξ|Br(x)‖22

≤
∑
x

∑
y∈Br(y)

C2Nr|ξ(y)|2

≤ C2N2
r ‖ξ‖22
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The second point is a direct calculation.

(1) =⇒ (2). The key point is the following.

Lemma 4.4. If A,B ⊂ X such that d(A,B) ≥ r, then there exists a function
φ : X → [0, 1] such that

• φ = 1 on A,
• φ = 0 on B,
• Lip(φ) ≤ 1

r .

Proof. Let us show that it gives the claimed implication. Let ε > 0, condi-
tion (1) gives a constant L. Put r > L−1. If then f, g ∈ l∞(X)1 such that
d(supp(f), supp(g)) ≥ r we have fφ = f and gφ = 0 so that

‖fbg‖ = ‖f [φ, b]g‖ ≤ ‖[φ, b]‖ < ε.

As for the lemma, just take

φ(x) = max{0, 1− d(x,A)
r
}.

�

(2) =⇒ (1). The key here idea is: if f has a small Lipschitz constant, then it varies
slowly so that its level sets are well separated.

Let f ∈ l∞(X) such that 0 ≤ f ≤ 1 and Lip(f) ≤ L, and put

Ai ={x | i− 1
N

< f(x) ≤ i

N
} i = 2, N

A1 ={x |0 ≤ f(x) ≤ 1
N
}

Then f ∼
∑N
i=1

i
NAi := g (actually ‖f − g‖ ≤ 1

N ) and also

d(Ai, Aj) ≥
1
NL

if |i− j| ≥ 2.

Also the Ai’s are disjoint and cover X. we will now estimate ‖[b, g]‖. Let ε > 0,

‖[g, b]‖ = ‖[
∑
i

i

N
Ai, b]‖

= ‖
(∑

i

i

N
Ai

)
b

(∑
i

Ai

)
−

(∑
i

Ai

)
b

(∑
i

i

N
Ai

)
‖

= ‖
∑
i,j

( i
N
− j

N
)AibAj‖

≤ ‖
∑
|i−j|=1

1
N
AibAj‖+ ‖

∑
|i−j|≥2

( i
N
− j

N
)AibAj‖

Let us label the summands of this last line by I and II. By quasi-locality of b, we get
a r = r(ε) > 0, then for any choice of N , put L = L(N, ε) such that L < (rN)−1.
Any such f with Lip(f) ≤ L satisfies d(Ai, Aj) > r so that ‖AifAj‖ < ε for each
term in the second summand, so that

(II) ≤ N2ε.

For (I), the pairs (i, j) can be split up into 4 classes: (i odd, j = i + 1), (i even,
j = i + 1) and the two symmetric cases. For each of these families, the sum is a
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block sum with orthogonal domain and range, hence the norm of the sum is less
than the sup of the norm of the terms, so that

(I) ≤ 4
N
.

Let us wrap all of this up: if ε is given, choose N such that 4
N < ε, choose

L = L(N, ε
N2 ). This gives:

‖[b, g]‖ ≤ (I) + (II)

≤ 4
N

+ ε

N2N
2

≤ 2ε.

5. Heart of the paper

Let us turn the attention to the most important result of the paper:

If X has FAD, then (1) =⇒ (4).

Theorem 5.1. Let X be a bounded geometry uniformly discrete metric space. If X
has finite asymptotic dimension, then

∀ε > 0,∃L > 0 s.t. a ∈ Commut(L, ε) =⇒ a ∈ C∗u(X)

and
a ∈ Commut(L, ε) ⇐⇒ ‖[a, f ]‖ < ε ∀f ∈ l∞(X)1, Lip(f) < L.

Review of asymptotic dimension. Recall that X has asymptotic dimension
less than d if for every r > 0, there exists a bounded cover X which is (d, r)-
separated. The typical example is the group Z with the metric induced by the
absolute value, which has asymptotic dimension bounded by 1. As an exercise,
prove that asdim(Zn) ≤ n.

In the context of asdim ≤ 1, conditional expectations into block subalgebras are
very natural. Consider subsets {Ui} of X which are pairwise disjoint and ui the
correponding multiplication operators. Define

θ(a) =
∑
i

uiaui ∀a ∈ B(`2X).

• θ(a) is SOT convergent;
• θ is lower continuous;
Both of these follow essentially from

‖θ(a)ξ‖2 =
∑
i

‖uiauiξ‖2 by orthogonality of the support,

≤ ‖a‖
∑
i

‖uiξ‖2

≤ ‖a‖ ‖ξ‖2

Take the directed systems of all the sums over finite subsets of I, in which
case the sum is finite.
• θ is a conditional expectation. (Meaning it is CP, θ(xay) = xθ(a)y when
x, y are block diagonals wrt

⊕
i `

2Ui, and θ(a) is block diagonal.)
Write u =

∑
i ui.

Fact: if prop(a) ≤ r and U is 2r-separated, then uau = θ(a).
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Proof. If ξ ∈ `2X, supp(uiξ) ⊂ Ui, so that supp(auiξ) ⊂ Nr(Ui) which is disjoint
from Uj , j 6= i. Hence the cross terms ujauiξ vanish. We get for finite sums∑

i,j∈F
uiaujξ =

∑
i∈F

uiauiξ,

and the result follows by continuity. �

Consequence: If b ∈ C∗u(X), for every ε > 0, there exists r > 0 such that if U is
r-separated, then

‖ubu− θ(b)‖ < ε.

This renders the next proposition natural.

Proposition 5.2. (Cor 4.3) If a ∈ Commut(L, ε), with the notations above, if U
is 2

L -separated, then
‖uau− θ(a)‖ < ε.

Remark: if the theorem is true, then the above discussion shows that the result
above must be true.

Proof. (of the theorem, assuming the above proposition) If asdim(X) ≤ 1, fix a big
r > 0: we get a bounded cover Y which is (1, r)-separated, meaning

Y = U ∪ V
with U and V r-separated families. Then, if a ∈ B(`2X),

a = uau+ uav + vau+ vav.

we want to show that if a ∈ Commut(L, ε) and r > 4L−1, then each term on the
right is near a finite propagation operator.

Claim: this is true for uau and vav.

This follows from the proposition: U is r > 4L−1 > 2L−1-separated so that
‖uau− θ(a)‖ ≤ ε

and θ(a) is block diagonal w.r.t. a bounded family, it is thus of finite propagation
(less than supU diam(U)).

Claim: this is true for uav and vau.

Let U ′ = NL−1(U), same for V ′. Both are at least 2L−1-separated. We thus obtain
f =

∑
fi with fi [0, 1]-valued, with value 1 on Ui, 0 on NL−1(Ui)c and Lip(fi) ≤ L.

Similarly for V, we get g =
∑
j gj . Then uf = u and vg = v. Put

Wij = NL−1(Ui) ∩NL−1(Vj) ,W =
∐
i,j

Wij

which is at least 2L−1-separated. Similarly, build w and wij . we then calculate:
uav = ufagv

= ugafv + u[f, a]gv + u[a, g]fv
So ‖uav − ugafv‖ ≤ 2ε

but now, ugafv ∈ Commut(L, ε), so that the proposition applies using the {Wij}
which are 2L−1-separated:

‖wugafvw − θw(ugafv)‖ ≤ ε.
7



But wugafvw = ugafv since wugug and fvw = fv (supp(fv) ⊂W and supp(ug) ⊂
W ). And θw(ugafv) is block diagonal with finite propagation. �

It remains to prove the proposition.

Block diagonal symmetries.

Lemma 5.3. If a ∈ CL,ε and U is a 2
L -separated family of X then

‖[uau, u]‖ < ε

where u =
∑
ui is our usual notation for the characteristic function of ∪Ui, and u

is a block diagonal symmetry, i.e. an operator of the type
∑
εiui, εi ∈ {−1, 1}.

Proof. Extend each ui to a [0, 1]-valued L-Lipschitz function, which is 1 on Ui and
zero outside of NL−1(Ui). Then the fi have disjoint support so that

f =
∑
i

εifi

satisfies Lip(f) ≤ L, ‖f‖ ≤ 1 and fu = u. But
[uau, u] = u[a, f ]u

which has norm smaller than ε. �

The block diagonal symmetries form a topological group (with the SOT topology),
isomorphic to

∏
U Z2 endowed with the product topology. It is thus a totally

disconnected compact group, and has a unique Haar probability measure du.

Lemma 5.4. Let Z ⊂ X and b ∈ B(`2Z). If
‖[b, u]‖ < ε ∀u block diagonal symmetry

then ‖b − E(b)‖ < ε, where E : B(`2Z) →
⊕
l∞(Ui) is the canonical expectation

onto the block diagonal. Furthermore,

E(b) =
∫
G

ubu du.

Remark: the example of the two point space is helpful to understand what is
happening. Let say

u =
(
ε1 0
0 ε2

)
and b =

(
x y
z w

)
then a simple calculation shows(

x 0
0 w

)
= 1

4
∑
u∈G

ubu

= 1
4

((
x y
z w

)
+
(
x −y
−z w

)
+
(
x y
z w

)
+
(
x −y
−z w

))
.

The estimate is easy:

‖E(b)− b‖ ≤ 1
4
∑
‖bu− ub‖ < ε.

Proof. First check that on the group G, the ∗-SOT, SOT and pointwise convergence
coincide. Since the norms are all smaller than 1, we can consider finitely supported
vectors, or even basis vectors.

Next the integral is understood in the weak sense, meaning that the assertion is

〈E(b)ξ, η〉 =
∫
G

〈 ubu ξ, η〉 du ∀ξ, η ∈ `2X.
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Ignoring existence, check the following matrix coefficients

〈E(b)δi, δj〉 =
{
bii if i = j
0 else.

and ∫
G

〈ubu δi, δj〉 du =
∫
G

〈bu δi, u δj〉du

= (
∫
G

εiεj du) bij .

But ∫
G

εiεj du = P(εi = εj)− P(εi 6= εj)

which is 1
2 −

1
2 = 0 if i 6= j, 1 otherwise. �

Finally let’s put all the lemmas together to get the proposition.

Proof. Let U be a 2
L -separated family and a ∈ CL,ε.

The first lemma gives
‖[uau , u]‖ < ε ∀u ∈ G,

and now uau ∈ B(`2Z) for Z = ∪Ui, so by the second lemma,
‖uau− E(uau)‖ < ε.

The canonical expectation E(uau) is θU (a), and this concludes the proof. �

6. Property (A)

The last part of the section is devoted to prove the assertion (quasi-locality implies
locality) when X has property (A).

Property (A) and its friends. Motivation: let G be a countable discrete group
with a bounded geometry left-invariant metric d. For each A ⊂ X and every r > 0,
define the r-corona of A to be the set

∂rA = {x ∈ X | 0 < d(x,A) ≤ R}.
Here is a possible definition of amenability.

Definition 6.1. The group G is amenable if for all r, ε > 0, there exists a finite
subset A ⊂ X satisfying

|∂rA| < ε|A|.

Remark: we don’t suppose the group to be finitely generated. For instanceG =
⊕

Z Z
with the metric l(n) =

∑
i i|ni| is not finitely generated, yet is of bounded geometry

and amenable. If G is finitely generated, one does not need to quantify over r in
the definition and can use ∂A instead.

This definition of amenability makes perfect sense for any bounded geometry metric
space. However, it is a bit silly, since for any bounded geometry space X, the
space X ∪ N is amenable. Indeed, given r > 0, take Ar = [r, r + N ] ⊂ N. Then
|∂rA|
|A| = 2r

N+1 is very small for N large. This definition of amenabilty is thus local
(“ something nice happens somewhere") when we actually want to say something
about the global structure of X.

Definition 6.2. The metric space X is uniformly locally amenable, abreviated
(ULA)µ after on, if for all r, ε > 0, there exists s > 0 such that for all probability
measure µ ∈ Prob(X), there is a finite subset A ⊂ X satisfying

diam(A) ≤ s and µ(∂rA) < εµ(A).
9



Remarks:
• The strict inequality is important, otherwise take A = ∅.
• The condition would be vacuous without the condition diam(A) ≤ s, with
s uniform on all probability measures. Otherwise just take the uniform
probability on A for all A: the measure of the r-corona is 0.
• (ULA)µ is equivalent to property (A), see [11].
• If G is a group, then if G is amenable, G is (ULA)µ. The proof is left as an
exercise for the reader.

More definitions.

Definition 6.3 ([33]). The metric space X is exact if for all r, ε > 0, there exists
s > 0 and a partition of unity {φi}i on X such that

• if d(x, y) < r, then ∑
i∈I
|φi(x)− φi(y)| < ε,

• diam(supp(φi)) ≤ s for every i ∈ I.

Definition 6.4 ([22]). The metric space X has the metric sparsification property,
abreviated MSP after on, if for all r, ε > 0, there exists s > 0 such that for all
µ ∈ Prob(X), there exists Ω ⊂ X such that

• µ(Ω) ≥ 1− ε,
• Ω is a r-disjoint union of s-bounded sets.

Theorem 6.5 (by everyone above). Exact =⇒ (1) (ULA)µ =⇒ (2) MSP =⇒ (3)
Exact.

The implication (3) is harder, see Sako [55]. The proof is C∗-algebraic: can we find a
direct proof?

Proof. (1) Given r, ε > 0, let µ ∈ Prob(X), and {φi} be as in the definition with∑
i∈I
|φi(x)− φi(y)| < ε

Nr
.

Hence for each fixed x,∑
y:d(x,y)≤r

∑
i∈I
|φi(x)− φi(y)| < ε = ε

∑
i

φi(x).

As µ is a probability measure,∑
x

µ(x)
∑

y:d(x,y)≤r

∑
i∈I
|φi(x)− φi(y)| < ε

∑
x

µ(x)
∑
i

φi(x).

hence there exists an index i0 such that∑
x

µ(x)
∑

y:d(x,y)≤r

|φ(x)− φ(y)| < ε
∑
x

µ(x)φ(x).

with φ = φi0 . now write φ =
∑
aiχFi

where ai > 0 and Fi+1 ⊂ Fi. All the Fi’s are
in supp(φ) so their diameter is bounded above by s.∑

x

µ(x)
∑

y:d(x,y)≤r

|
∑
k

ak(χFk
(x)− χFk

(y))| < ε
∑
x

µ(x)
∑
k

akχFk
(x)

∑
x

µ(x)
∑

y:d(x,y)≤r

∑
k

ak|χFk
(x)− χFk

(y)| < ε
∑
x

µ(x)
∑
k

akχFk
(x).
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Hence ∑
x

µ(x)
∑

y:d(x,y)≤r

|χFk
(x)− χFk

(y)| < ε
∑
x

µ(x)χFk
(x) = εµ(Fk)

for some k = k0, and for x ∈ ∂rFk0 ,∑
y:d(x,y)≤r

|χFk
(x)− χFk

(y)| ≤ 1 ≤
∑

x∈∂rFk0

µ(x) = µ(∂rFk0).

Set A = Fk0 , then
µ(∂rFk0) < εµ(A).

�
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Quasi-locality and property (A). The main goal of this section is to provide a
proof of (1) =⇒ (4) in the case whereX has property (A). Let us fix some notations.

For (X, d) a metric space, a partition of unity will be given by a pair (φ,U) where
U is a cover of X and φ is a map

φ : X → `2(U)1,+ ,

such that x 7→ φU (x) is supported in U for every U ∈ U . (The notation `2(U)1,+
means positive elements of norm 1.) If U = {Ui}i∈I , we will identify `2(U) with `2(I).

The characterization of property (A) which we use is the following, obtained by
Dadarlat and Guentner in [33].

Theorem 6.6. A metric space X is called exact if, for every r, ε > 0, there exists
a partition of unity φ : X → `2(U) such that U is uniformly bounded with finite
multiplicity and

d(x, y) ≤ r =⇒ ‖φ(x)− φ(y)‖2 ≤ ε.
If X is discrete and of bounded geometry, exactness and property (A) are equivalent.

We will also need to know that property (A) implies the metric sparsification prop-
erty, which was proven in the last section.

The key idea of the proof relies on an approximation property of quasi-local operators:
their norm can be approximated by finitely supported vectors. This means that if
b ∈

⋂
ε

⋃
L CL,ε,

‖b‖ = sup
‖v‖=1 , diam(supp(v))<∞

‖bv‖.

This relies on the following lemma.

Lemma 6.7 ([77], lemma 5.2). For every M,L, ε, there exists s > 0 such that,
for every b ∈ CL,ε with ‖b‖ ≤ M , there exists v ∈ `2(X) satisfying ‖v‖ = 1,
diam(supp(v)) < s and

‖bv‖ ≥ ‖b‖ − ε.

Proof. (of the result, using the lemma) Let X discrete with bounded geometry and
property (A), and say b ∈ B(`2X) is quasi-local and fix ε > 0. Then there is L > 0
such that b ∈ CL,ε and, by the lemma, a s > 0 such that ‖T‖ can be approximated
up to ε by s-supported vectors for every T ∈ C2ε,L with ‖T‖ ≤M .

Choose a partition of unity φ with uniformly bounded support and

d(x, y) ≤ s+ 1
L

=⇒ ‖φ(x)− φ(y)‖ ≤ ε.

Let us show that the norm of
a = b−

∑
i

φibφi =
∑
i

φi[φi, b]

is small enough.

The following computation shows that a ∈ C2ε,L:

‖[a, f ]‖ = ‖[
∑
i

φi[φi, b], f ]‖

≤ ‖
∑
i

φi[b, f ]φi‖+ ‖[b, f ]‖

≤ 2ε
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where we used ‖
∑
i φi[b, f ]φi − φ[b, f ]φ‖ < ε. This follows from the fact that,

if ej are positive contractions with 2
L -separated support, and T ∈ Cε,L, then

‖eTe−
∑
i eiTei‖ < ε. This is not a trivial statement, and was proven in the last

section (Cor 5.3 of [77]).

Of course, ‖a‖ ≤ 2M , so we can apply the statement of the first paragraph to a:
there exists a unit vector v ∈ `2X with support F satisfying diam(F ) < s and
‖av‖ ≥ ‖a‖ − ε, and

|
∑
i

φi(x)(φi(x)− φi(y))bxy| ≤M(
∑
i

φ2
i (x)) 1

2 (
∑
i

|φi(x)− φi(y)|2) 1
2

≤M‖φ(x)− φ(y)‖2
so that if x ∈ NL−1(F ), ‖φ(x)− φ(y)‖2 ≤ ε, and

|av|x = |
∑
i,y∈F

φi(x)(φi(x)− φi(y))bxyvy|

≤
∑
y∈F
|
∑
i

φi(x)(φi(x)− φi(y))bxy| |vy|

≤ εM
∑
y∈F
|vy|

≤ εMN
1
2
s ‖v‖.

Now ‖av‖2 =
∑
x |av|2x ≤M2N2

s ‖v‖2ε2 +
∑
x∈NL−1

|av|2x, but a being in C2ε,L,

‖χFaχNL−1 (F )‖ < ε

hence ‖av‖2 ≤ (M2N2
s + 1) 1

2 ‖v‖ε. �

It remains to prove the lemma.

Proof. Let b ∈ Cε,L and M = ‖b‖. Let v ∈ `2(X) be a unit vector such that
‖bv‖ ≤ ‖b‖ − ε

2M (so that ‖bw‖ ≥ ‖bv‖ − ε). Denote by µ the probablity measure
on X defined by

µ({x}) = |vx|2.
The MSP implies that there is a subset Ω ⊂ X with µ(Ωc) < ε and Ω is a 4

L -separated
disjoint union

Ω =
∐

4
L

Ωi

of uniformly bounded subsets, i.e. diam(Ωi) < s for all i. Denote by wi = PΩi
v, and

w =
∑
i wi. Then the condition above says that ‖v−w‖2 < ε and diam(supp(wi)) <

s so if we could approximate ‖b‖ using one of the wi’s, that would end the proof.

There exists fi ∈ l∞(X)1 such that
• Lip(fi) ≤ L,
• supp(fi) ⊂ NL−1(Ωi),
• fi = 1 on Ωi and 0 outside of NL−1(Ωi).

Then f =
∑
i fi and 1 − f are also L-lipschitz functions and fw = w. But

bw = [b, f ]w + fbw so
‖bw‖ ≤ ε‖w‖+ ‖fbfw‖

≤ 2ε‖w‖+ ‖
∑
i

fibfiw‖

13



In the last line, we used that ‖fbf −
∑
fibfi‖ ≤ ε:

Now, the same trick fib = [fi, b] + bfi entails that

‖
∑
i

fibfiw‖2 =
∑
i

‖fibw‖2

≤ ε
∑
i

‖wi‖2 +
∑
i

‖bwi‖2

≤ ε‖w‖2 +
∑
i

‖bwi‖2

so that

(‖bw‖ − 3ε‖w‖)2 ≤
∑
i

‖bwi‖2 ≤
∑
i

‖bwi‖2

‖wi‖2
‖wi‖2 ≤ sup

i
(‖bwi‖

2

‖wi‖2
)‖w‖2

from which follows that
‖bw‖
‖w‖

≤ sup
i

‖bwi‖
‖wi‖

+ 3ε.

and
sup
i

‖bwi‖
‖wi‖

+ 3ε ≥ ‖bv‖ − ε‖v‖
‖w‖

≥ ‖bv‖ − ε ≥ ‖b‖ − 2ε

so that there exists i0 such that ‖bwi0‖
‖wi0‖

≥ 6ε, and diam(supp(wi0)) < s. �
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