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These are the notes for the NCG seminar, Fall 2018, of UH Manoa. This semester
is devoted to the study of C∗-simplicity for discrete groups, with a focus on the
results of Breuillard, Kalantar, Kennedy and Ozawa. These are the references:

• Boundaries of reduced C∗-algebras of discrete groups, Mehrdad Kalantar
and Matthew Kennedy [44],
• C∗-simplicity and the unique trace property for discrete groups, Emmanuel
Breuillard, Mehrdad Kalantar, Matthew Kennedy, Narutaka Ozawa [11],
• An intrinsic characterization of C∗-simplicity, Matthew Kennedy [55].

1. General introduction

Let Γ be a countable discrete group. We will recall two equivalence relations on
unitary representations of Γ, which are group homomorphisms

π : Γ→ U(Hπ)
where U(Hπ) stands for the unitary group of a complex Hilbert space Hπ. We will re-
fer to such a representation as (π,Hπ) or even just π or Hπ if no confusion is possible.

Let π and σ be two representations of Γ.
• π w σ iff there exists a unitary u : Hπ → Hσ such that

uπγu
∗ = σγ ∀γ ∈ Γ.

• π ≈ σ iff there exists a sequence of unitaries un : Hπ → Hσ such that
‖unπγu∗n − σγ‖ → 0 ∀γ ∈ Γ.

Fact: It turns out that for a lot of groups (e.g. finite, abelian, compact, simple Lie
groups,...), these two notions coincide

π ≈ σ iff π w σ for π, σ irreducible.
Let Γ̂ be the collection of all representations of Γ. A very hard problem is to describe

Γ̂/ ≈ .
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It can be done sometimes, e.g. for Z the irreducible representations are given by
the circle, and any representation decomposes more or less uniquely into these.

Let us recall that the (left) regular representation

λ : Γ→ U(`2Γ)

is defined by λg(δh) = δgh. The reduced C∗-algebra C∗r (Γ) is the closure under the
operator norm of the image of the regular representation, i.e.

C∗r (Γ) = span{λγ}γ∈Γ.

A representation π is tempered if it extends to a ∗-representation of C∗r (Γ). This
happens iff the linear extension

π : C[Γ]→ B(Hπ)

satisfies ‖π(a)‖ ≤ ‖λ(a)‖,∀a ∈ C[Γ].

Fact: All representations are tempered iff the group is amenable.

Another (very hard) problem is to describe

Γ̂r/ ≈ .

Definition 1.1. Γ is C∗-simple if C∗r (Γ) is simple, i.e. admits no proper two sided
closed ideal.

Theorem 1.2 (Voiculescu). Γ is C∗-simple iff Γ̂r/ ≈ is a point.

Examples of C∗-simple groups:
• Non abelian free groups;
• Torsion free hyperbolic groups;
• PSL(n,Z);
• Thompson’s group V .

1.0.1. Non C∗-simple examples. Recall that a group Γ is amenable iff the trivial
representation

1Γ : Γ→ U(C) = S1; γ 7→ id = 1;

is tempered. As a consequence, non trivial amenable groups are not C∗-simple as
1 ≈ λ (since dim(`2Γ) 6= 1 when Γ is not trivial).

More generally if there exists an amenable normal subgroup K C Γ, then the quasi
regular representation

λΓ/K : Γ→ U(`2(Γ/K)); λΓ/K(γ)(δxK) = δγxK ;

is tempered, hence if K is not trivial, Γ is not C∗-simple. In particular any semi-
direct product K oH with K amenable and non trivial is not C∗-simple.

Amenability being stable by extensions and increasing unions, any group has a
largest normal amenable subgroup R C Γ called the amenable radical. The previous
discussion shows that if Γ is C∗-simple, then R = {e}. The converse does not hold
and was completely answered by Kennedy et al.
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1.0.2. How to prove C∗-simplicity? À la Powers [77].

Definition 1.3. A group Γ is a Powers group if for every finite subset F ⊂ Γ there
exists a partition

Γ = C
∐

D

and a finite number of elements γ1, ..., γn ∈ Γ with
• γC ∩ C = ∅ for every γinF :
• γiD ∩ γjD = ∅ for every i 6= j.

Examples:
• The free group on two generators F2 (Powers [77]);
• Many other examples using“North-South” type dynamics (De la Harpe,
Bridson, Osin).

Let us write a few words about the technique Powers used. For F2 = 〈a, b〉, let
τ : C∗r (F2)→ C; a 7→ 〈δe, aδe〉

be the canonical tracial state.

Theorem 1.4 (Powers [77]). For every a ∈ C∗r (Γ),

τ(x) = lim 1
mn

∑
i=1,n j=1,m

λiaλ
j
bxλ
−j
b λ−ia

Corollary 1.5. F2 is C∗-simple.

Proof. Let J C C∗r (F2) be an ideal. For x ∈ C∗r (F2) let

xmn =
∑

i=1,nj=1,m
λiaλ

j
bxλ
−j
b λ−ia .

If x ∈ J then (x∗x)mn ∈ J so τ(x∗x)1C∗
r (F2) ∈ J

‖ ‖. If J is not trivial, it contains
a non zero element x, which forces 1C∗

r (F2) ∈ J as τ(x∗x) > 0. This ensures that
J = C∗r (F2) and we are done. �

Corollary 1.6. C∗r (F2) has a unique tracial state.

Proof. Let τ ′ be a tracial state on C∗r (F2). Then for x ∈ C∗r (F2),
τ ′(x) = τ ′(xmn)→ τ ′(τ(x)1) = τ(x)τ ′(1) = τ(x).

�

2. Definitions

We only consider discrete countable groups, usually denoted by Γ.

Definition 2.1. A group is said to be C∗-simple if its reduced C∗-algebra is simple,
i.e. has no proper closed two sided ideals.

A motivation for the interest toward such a notion can be the following result of
Murray and Von Neumman: the Von Neumman algebra L(Γ) is simple (no proper
weakly closed two sided ideals) iff it is a factor iff Γ is ICC (infinite conjugacy
classes, i.e. all non trivial conjugacy classes are infinite). Another one is that
simplicity is one out of the 5 criteria (unital simple separable UCT with finite
nuclear dimension) needed in Elliott’s classification programm (see for instance [33]
for a good introduction).

Recall that, given two unitary representations of Γ, we say that π is weakly contained
in σ and write

π < σ
3



if every positive type function associated to π can be approximated uniformly on
compact sets by finite sums of such things associated to σ. In other words, if for
every ξ ∈ Hπ, every F ⊆ Γ finite and every ε > 0, there exists η1, η2, ..., ηk such
that

|〈π(s)ξ, ξ〉 −
∑
i

〈σ(s)ηi, ηi〉| < ε ∀s ∈ F.

Remark: one can restricts to convex combinations of normalized positive type
functions.

If π < σ, then idC[Γ] extends to a surjective ∗-homomorphism

C∗σ(Γ)→ C∗π(Γ).

Indeed, it suffices to show that for every a ∈ C[Γ],

‖π(a)‖ ≤ ‖σ(a)‖.

As ‖π(a)‖2 = ‖π(a∗a)‖, we can suppose a positive. Then

〈π(s)ξ, ξ〉 ≤
∑
i

ti〈σ(s)ηi, ηi〉+ ε

≤ ‖σ(a)‖+ ε

hence ‖π(a)‖ ≤ ‖σ(a)‖+ ε, and let just ε go to zero.

Definition 2.2. A group Γ is C∗-simple if its reduced C∗-algebra is simple (i.e.
has no proper closed two sided ideal).

Theorem 2.3. If Γ has a non trivial amenable normal subgroup, then it is not
C∗-simple.

Proof. Let N be a normal amenable subgroup of Γ. Let (Fk) be a sequence of
Følner sets for N , and

ξk = 1
|Fk|

1
2
χFk
∈ `2(Γ)

Then

‖s · ξk − ξk‖22 = 2 (1−R〈λΓ(s)ξk, ξk〉) = 2
(

1− |Fk∆sFk|
|Fk|

)
.

The term |Fk∆sFk|
|Fk| is 0 if s /∈ N , and goes to 1 as n goes to infinity if s ∈ N , hence

〈λΓ(s)ξk, ξk〉 → 〈λΓ/N (s)δeN , δeN 〉,

which shows that λΓ/N < λΓ. This gives us a surjective ∗-morphism

φ : C∗r (Γ)→ C∗Γ/N (Γ).

A faster but more involved argument, which still works out when the ambient group
is only locally compact, is the following. As N is amenable,

1N < λN ,

ensures by induction

IndΓ
N1N = λΓ/N < IndΓ

NλN = λΓ.

But if n ∈ N is non trivial, λΓ(n) is non trivial and sent to λΓ/N (n) = 1 via φ, so
that Ker φ is a proper ideal in C∗r (Γ).

�
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After the talk, Erik Guentner suggested the following proof. It is even shorter and
doesn’t assume any knowledge about weak containment or induction of represen-
tations. It is a weakening of the following fact: when Γ is amenable, the trivial
representation 1Γ : C∗max(Γ)→ C extends to the reduced C∗-algebra.

Indeed let a ∈ C[Γ] and (Fn) be a sequence of Følner sets for Γ. Define ξn =
1

|Fn|
1
2
χFn
∈ `2(Γ). Then, suppose a is positive, and compute

〈aξn, ξn〉 =
∑

s∈ supp a
as
|Fn ∩ sFn|
|Fn|

→ ‖a‖1Γ =
∑
s

as

so that ‖a‖1Γ ≤ ‖a‖r.

Now if N is a normal amenable subgroup of Γ, do the same with Følner sets for N ,
and the coefficients of the induced representation λΓ/N .

Remark that both conditions are necessary. Indeed, we saw that F2 is C∗-simple,
yet it has a copy of Z as an amenable subgroup (non normal), and a normal (non
amenable) subgroup: the commutator subgroup, which is an infinite rank free group,
〈[x, y] : x, y ∈ F2〉 = F([an, bm];n,m).

This result led to following (false) conjecture: a group is C∗-simple iff it has no non
trivial amenable normal subgroups.

3. Injective C∗-algebras

Recall that an abelian group M is injective if, given any injective homomorphism of
abelian group A ↪→ B, any homomorphism A → M extends to a homomorphism
B →M . In words: any homomorphism into M extends to super-objects. We will
often use the following commutative diagram

B

A M

∃

to represent this situation. We will now turn to an analog notion in the C∗-algebraic
setting.

Definition 3.1. A C∗-algebra M is injective if, given an inclusion of C∗-algebras
A ⊂ B, any injective ∗-homomorphism A → M extends to B by a contractive
completely positive (CCP) map.

B

A M

∃ ccp

Even if the straight arrow are here supposed to be ∗-homomorphism, Stinespring’s
dilation theorem ensures that we can suppose all the arrows to be only CCP maps.
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We will say that M is Γ-injective if Γ acts by automorphisms on all the C∗-algebras
in the diagram, and all the arrows are Γ-equivariant.

We will define a particular class of compact spaces acted upon by Γ, called Γ-
boundaries, and show that there exists a maximal Γ-boundary ∂FΓ, called the
Furstenberg boundary.

The first major goal of this presentation is to show that C(∂FΓ) is Γ-injective.

3.0.1. Description of commutative injective algebras.

Lemma 3.2. If M is injective and S ⊂M , define
AnnM (S) = {m ∈M | ∀s ∈ S, sm = 0}.

Then there exists a projection p ∈M satisfying AnnM (S) = pM .

Proof. This is true if M = B(H) for some Hilbert space. In the general case,
embed M unitally in some B(H). By injectivity of M , there exists a CCP map
E : B(H) → M such that E(m) = m,∀m ∈ M so M ⊂ dom(E) (multiplicative
domain). There exists a projection p ∈ B(H) with AnnB(H)(S) = pB(H) (take the
projection on ∩s∈SKer(s)). If s ∈ S,

sE(p) = E(sp) = 0 hence E(p) ∈ AnnM (S).
Moreover if m ∈ AnnM (S) ⊂ pB(H), pm = m and

E(p)m = E(pm) = E(m) = m

so that for m = E(p), we get E(p) is a projection. This also proves that
E(p)AnnM (S) = AnnM (S).

A slight fiddling ensures then that AnnM (S) = E(p)M . �

Corollary 3.3. Let X be a compact Hausdorff space. If C(X) is injective then X
is Stonean, i.e. U is open for every open subset U ⊂ X.

Proof. Let U ⊂ X be open, and S = C0(U). By the previous lemma, there exists a
projection p ∈ C(X) such that AnnC(X)(S) = pC(X). But p cannot be anyone else
than the characteristic function of U c so that 1 − p = χU is continuous and U is
open. �

Note: Infinite compact Stonean spaces are not metrizable (not even second count-
able). Suppose the contrary and get a sequence xi → x in X and open sets
Un = B(xn, εn), with εn such that Un ∩ Um = ∅ for every n 6= m. Set U = ∪nU2n,
then x ∈ U (U is open) so xn ∈ U for large n but xn /∈ U for n odd.

4. Furstenberg boundary

If Γ is a discrete group acting on a compact Hausdorff space X (we will just say
that X is a Γ-space), the space of probability measures Prob(X) endowed with the
weak-∗ topology is homeomorphic to the state space S(C(X)) with the topology
of simple convergence. We identify X with a closed subspace of Prob(X) with the
help of the Dirac masses ( x 7→ δx is an embedding X ↪→ Prob(X)). Recall that the
action can be extended to Prob(X), which is then a Γ-space by Banach-Alaoglu’s
theorem.

Definition 4.1. A Γ-space X is:
• minimal if the only Γ-invariant closed subset of X are itself and ∅;
• strongly proximal if Γ.µweak−∗ contains δx for some x ∈ X;
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• a Γ-boundary if it is minimal and strongly proximal

X ⊂ Γ.µweak−∗ ∀µ ∈ Prob(X).

Example: Let SL(2,Z) act on the projective line RP 1 (the quotient of R2\{0} by
the group of dilations) given by(

a b
c d

)(
x
y

)
=
(
ax+ by
cx+ dy

)
.

Most g ∈ Sl(2,Z) are acting hyperbolically (two distinct eigenspaces, one expansive
one contractive). Take µ ∈ Prob(RP 1), and a generic element g ∈ SL(2,Z). As n
goes to ∞,

gn.µ→weak−∗ δExpanding eigenspace

unless µ({contractive eigenspace}) > 0, hence

{δExpanding eigenspace}g∈SL(2,Z) ⊂ Γ.µwk−∗.

Exercise: the set of these is dense in RP 1 ⊂ Prob(RP 1).

Theorem 4.2 (Furstenberg [22]). There exists a Γ-boundary ∂FΓ (now called the
Furstenberg boundary) such that for any Γ-boundary X there exists a continuous
Γ-equivariant surjection ∂FΓ� X.

Proof. Let B be the class of all Γ-boundaries. It is non empty as it contains the
point space. Take

Z =
∏
Y ∈B

Y

which is compact by Tychonoff’s theorem. Equip Z by the diagonal Γ-action.
• It is strongly proximal: for any µ ∈ Prob(Z), a diagonal argument gives a
weak-∗ convergent net gi.µ→ δz for some z ∈ Z.
• It is not minimal, but Zorn’s lemma ensures the existence of a minimal
closed Γ-invariant subset ∂FΓ of Z.

We obtain the desired map as the composition of the inclusion ∂FΓ ↪→ Z with the
projection on the X-factor Z � X. �

Theorem 4.3 (Kalantar-Kennedy [44]). C(∂FΓ) is Γ-injective.

Lemma 4.4. There exists a bijective correspondence between the completely positive
maps from C(X) to C(Y ) and the continous maps from Y to Prob(X). The
statement remains true if one asks for equivariance. send to a previous section
on CP maps

Lemma 4.5 (Furstenberg). Let X and Y be two Γ-boundaries. Then any Γ-
equivariant map X → Prob(Y ) has image in Y , i.e. any UCP map C(X)→ C(Y )
is a ∗-homomorphism! Moreover there is at most one such map.

Proof. Take µ : X → Prob(Y ). The image µ(X) ⊂ Prob(Y ) is a closed Γ-invariant
subspace: by strong proximality of Y , there exists y ∈ Y such that

δy ∈ Γ.µx
wk−∗ ⊂ µ(X).

By minimality of Y , Γ.µx
wk−∗ ∩ Y = Y , By minimality of X, µ−1(Y ) = X i.e.

µ(X) ⊂ Y .

Let µ, η : X → Prob(Y ) be two such maps. Then 1
2µ+ 1

2η, µ and η all take values
in Y so that they are all equal. �

Corollary 4.6. Any equivariant UCP map C(∂FΓ)→ C(∂FΓ) is the identity.
7



Recall that if A is a unital Γ-algebra, its state space S(A) is convex compact Γ-space.

Proposition 4.7 (Gleason). Let Z ⊂ S(A) be a Γ-invariant closed convex subspace,
which is minimal w.r.t. these properties. (Such a thing exists by Zorn’s lemma.)
Then
∂exZ = {φ ∈ Z | φ is not a non trivial convex combination of anything in Z}

is a Γ-boundary.

• •

•

Figure 1. Two examples with Z in blue and ∂exZ in black.

Proof. There is a barycenter map β : Prob(Z)→ Z such that∫
Z

fdµ = f(β(µ)) ∀f ∈ C(Z) affine.

Indeed, if µ = δz, β(µ) = z and if µ =
∑
αiδzi

with 0 ≤ αi ≤ 1 and
∑
αi = 1,

then β(µ) =
∑
αizi. Finite convex combinations are weak-∗ dense in Prob(Z) by

the Hahn-Banach separation theorem. As β is weak-∗ continuous, and affine so
uniformly weak-∗ continuous, it extends to the whole space Prob(Z).

Note: β is Γ-equivariant continuous and satisfies β(µ) = z ∈ ∂exZ iff µ = δz.

Then, for any µ ∈ Prob(Z),

β(conv(Γµ)) = conv(Γβ(µ)) = Z,

the first equality coming from continuity, Γ-equivariance and affinity. Now, ∂exZ is
minimal, and if µ ∈ ∂exZ, then

AFINIR

�

We are now ready for the main result of this section.

Theorem 4.8 (Kalantar-Kennedy). C(∂FΓ) is Γ-injective.

Proof. First, observe that `∞(Γ) is Γ-injective. Let indeed A ⊂ B be an inclusion
of C∗-algebras and φ : A→ `∞(Γ) a ∗-homomorphism. Then eve ◦ φ is a state on
A, so it extends to a state Ψ on B. Define φ̃ : B → `∞(Γ) by

φ̃(b)(γ) = Ψ(γ−1.b).
Then Ψ is a UCP Γ-equivariant map that extends φ.

Now, producing ucp equivariant maps

C(∂FΓ) `∞(Γ) C(∂FΓ)α β

is sufficient to conclude, as their composition must be the identity by corollary 4.64.6.
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Define α : C(∂FΓ)→ `∞(Γ) by fixing µ ∈ Prob(∂FΓ) and set

α(f)(γ) = µ(γ−1.f).

By Gleason’s theorem 4.74.7, there is a Γ-boundary X ⊂ S(`∞(Γ)). By universal
property of ∂FΓ, we have an equivariant surjection ∂FΓ � X ⊂ S(`∞(Γ)). By
duality, we get a Γ-equivariant ucp map

Ψ : `∞(Γ)→ C(∂FΓ)

and we are done. �

As a final remark, one can point out that this last proof used the following useful
fact: if B is injective and φ : A → B is a split injective Γ-ucp map, then A is
injective. We use this with A = C(∂FΓ) and B = `∞(Γ).

5. Dynamical characterization of C∗-simplicity

We will be using the following facts:
• C(∂FΓ) is Γ-injective, in particular any Γ-equivariant u.c.p. C(∂fΓ)→ A
is split, so is an isometric embedding,
• ∂FΓ is totally disconnected.

The goal of this section is to prove the following theorem.

Theorem 5.1. Γ is C∗-simple iff the action of Γ on ∂FΓ is free.

Let’s do first the forward direction.

Suppose the action is free. First, to show C∗r (Γ) is simple, it is enough to show that
any representation

π : C∗r (Γ)→ B(H)
is injective.

By Arveson’s extension theorem, π extends to a u.c.p. map

φ : C(∂FΓ)or Γ→ B(H).

Its restriction φ0 to C(∂FΓ) is Γ-equivariant, because C(∂FΓ) is in the multiplicative
domain of φ0, and thus must be an isometric embedding, by Γ-injectivity of C(∂FΓ)
(it is split because C ⊆ B(H)). The equivariant u.c.p. map φ0 is an isomorphism
onto its image: extend its inverse form im φ0 to im φ and denote the resulting u.c.p
map by τ .

Claim: Ψ = τ ◦ φ is the canonical expectation E : C(∂FΓ)or Γ→ C(∂FΓ) which is
faithful. This implies π is injective.

Let’s end up with the claim.
• Ψ|C(∂F Γ) = idC(∂F Γ). Indeed, τ is the inverse of φ0 = φC(∂F Γ).
• If γ 6= eΓ, the action being free, for every x there exists a function f ∈
C(∂FΓ) such that

f(x) 6= 0 and f(s−1x) = 0.

Now C(∂FΓ) is in the multiplicative domain of Ψ, so

Ψ(λs)f = Ψ(λsf) = Ψ((sf)λs) = (sf)Ψ(λs)

which evaluated at x gives Ψ(λs)(x) = 0, for all x, so Ψ(λs) = 0.
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The other direction is more intricated. It consists in two steps:

(1) if x ∈ ∂FΓ, then the stabilizer Γx is amenable, which implies that λΓ/Γx
<

λΓ,

(2) if X is a X is a Γ-boundary, and γ 6= 0 such that int(Xs) 6= ∅, then
λΓ ≮ λΓ/Γx

, so that the kernel of C∗r (Γ) → C∗λΓ/Γx
(Γ) is a non trivial two

sided closed ideal.

This, together with the fact that ∂FΓ is topologically free iff it is free, concludes the
proof.

First bullet:

• there exists a Γx-equivariant injective ∗-homomorphism

ρ : `∞(Γx)→ `∞(Γ)

defined by ρ(f)(tsi) = f(t) for every t ∈ Γx, {si}i being a system of repre-
sentatives of the right cosets Γx\Γ.

• there exists a Γx-equivariant u.c.p. map

ψ : `∞ → C(∂FΓ),

by universal property of ∂FΓ, and the fact that the spectrum of `∞(Γ) is
βΓ. (for any compact Γ-space, there exists a Γ-map ∂FΓ→ P (X). take the
dual of this map for X = βΓ).

• The composition φ = evx ◦ ψ ◦ ρ defines a Γx-invariant state on `∞(Γx),
which concludes the proof.

Second bullet:

This needs a lemma:

Lemma 5.2. Let X be a Γ-boundary. For every non empty subset of X, every
ε > 0, there exists a finite subset F ⊂ Γ\{eΓ} such that

min
t∈F

µ(tU c) < ε ∀µ ∈ P (X).

Proof. Let x ∈ U . By strong proximality, there exists tµ 6= eΓ such that

δx(U)− µ(tµU) = µ(tµU c) < ε,

and by continuity of the action

Vµ = {ν ∈ P (X) | ν(tµU c) < ε}

is a neighboorhood of µ. By compactness of P (X) in the weak-∗ topology, we can
extract a finite cover such that

P (X) = ∪i=1,mVµi .

Then F = {tµ1 , ..., tµm
} fills the requirements of the lemma.

�
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Suppose the action is not topologically free and let s 6= eΓ such that the interior U
of Xs is not empty. Let F the finite subset given by the lemma for U and ε = 1

3 .
Suppose

λΓ < λΓ/Γx
.

We will show this is absurd by looking at the coefficient cγ = 〈λΓ(γ)δe, δe〉, which is
0 unless γ = eΓ.

On the finite subset K = {tst−1}t∈F , approximate cγ up to ε by a convex combina-
tion ∑

j=1,n
αj〈λΓ/Γx

(γ)ξj , ξj〉

of coefficients of the quasi regular representation. Set

µj =
∑
y∈Γ.x

|ξj(y)|2δy ∈ P (X) and µ =
∑

αjµj ,

where we identify Γ.x with Γ/Γx. A FINIR

Questions:

• Can we get a more direct proof for the last implication? (without represen-
tation theory)

• It is not known in general wether the action of Γ on ∂FΓ is amenable. If X
is a Γ-space such that one of the stabilizer is not amenble, the action cannot
be amenable. Is it true that, if Γ is exact, this is the only obstruction for
the amenability of the action?

6. Another proof

The last subsection uses representation theory (induction) which makes one wonder
if this could be avoided. While the implication

∂FΓ is free ⇒ Γ is C∗-simple

is still good enough if one wants to stay clear of representation theoretic lingo, the
other direction can be proven in another way.

This proof is taken from a set of notes that Ozawa wrote after giving lectures for the
“Annual Meeting of Operator Theory and Operator Algebras” at Tokyo university,
24–26 December 2014.

For X a compact Γ-space and H a subgroup of Γ, we denote by:

• Ex : C(X)or Γ→ C∗r (Γ) the canonical conditional expectation onto C∗r (Γ)
given by extending the evaluation at x,

• EH : C∗r (Γ) → C∗r (H) the canonical conditional expectation given by
E(λs) = δs∈H ,

• τH the canoncical trace C∗r (H)→ C.

The first thing one can show is the following.
11



Proposition 6.1. Let X be a Γ-boundary, then

C(X)or Γ

is simple.

Proof. It is enough to show that any quotient map

π : C(X)or Γ→ B

is injective. By C∗-simplicity, π restricts to an isomorphism on C∗r (Γ) so that the
canoncial trace τ is well defined on π(C∗r (Γ). Seeing C as the sub-C∗-algebra of
constant functions in C(∂FΓ), we can extend τ to B.

C(X)or Γ B

C∗r (Γ) π(C∗r (Γ)) C ⊆ C(∂FΓ)

π

φ

∼= τ

Now φ ◦ π restricts to a Γ-u.c.p. map C(X) → C(∂FΓ) which can only be the
inclusion. This ensures that

C(X) ⊆ Dom(φ ◦ π).

As φ extends τ , φ ◦ π is the canonical conditional expectation C(X)or Γ→ C(X)
which is faithful. In particular, π is faithful, and is injective. �

Applying this to X = ∂FΓ, we get that C(∂FΓ)or Γ is simple. In that case, every
stabilizer

Γx = {s ∈ Γ | sx = x} ∀x ∈ ∂FΓ
is amenable. Moreover, the strong stabilizer

Γ0
x = {s ∈ Γ | ∃U neighborhood of x s.t. sU = idU}

is a normal subgroup of Γx.(In particular, is is amenable.) In that case, we will
apply the following proposition.

Proposition 6.2. Let X be a minimal compact Γ-space. If

C(X)or Γ

is simple and there exists x ∈ X such that Γ0
x is amenable, then X is topologically

free.

Proof. By minimality, topological freeness is equivalent to Γ0
x = 1 for some x.

Indeed, if Γ0
x = 1 for some x, every non trivial group element cannot fix any

neighborhood of x hence for every s 6= eΓ, we get a sequence of points that converge
to x which are not fixed by s. By minimality,

Xs = {y ∈ X | sy 6= y}

is a non empty dense open set of X for every s 6= eΓ. By Baire category’s theorem,

∩s∈Γ\{e}Xs

is dense in X so that X is topologically free.

Let us show that Γ0
x = 1. Define a representation

ρ : C(X)or Γ→ B(`2(Γ/Γ0
x))

12
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Figure 2. The graph of
(
I1 I2 I3
J2 J1 J3

)

by ρ(fλs)δγΓ0
x

= f(sγ.x)δsγΓ0
x
. It is clearly covariant on the algebraic crossed-

product.

To prove ρ extends to the whole crossed-product, i.e. ‖ρ(a)‖ ≤ ‖a‖C(X)orΓ, it is
enough to show that

〈 ρ(a)δΓ0
x
, δΓ0

x
〉 ≤ ‖a‖C(X)orΓ

because δΓ0
x
is cyclic. This follows from the fact that the latter is the composition

τ ◦ EΓ0
x
◦ Ex of 3 u.c.p maps (so contractive).

Pick up x such that Γ0
x is amenable and s ∈ Γ arbitrary that fixes some neighborhood

of x: there exists a neighborhood U of x such that s|U = idU . Let f ∈ C(X) be
nonzero and supported in U . Let us compute

ρ(fλs)δγΓ0
x
.

• If γ.x ∈ U , then sγ.x = γ.x and
ρ(fλs)δγΓ0

x
= f(γ.x)δγΓ0

x
= ρ(f)δγΓ0

x
.

• If γ.x /∈ U , f(γ.x) = 0 = f(sγ.x), so that ρ(fλs)δγΓ0
x

= ρ(f)δγΓ0
x
.

This shows that ρ(f(λs − 1)) = 0. By injectivity, λs = 1 and s = eΓ hence Γ0
x = 1

and we are done. �

7. Thompson’s group V is C∗-simple

In this section, we prove that Thompson’s group V is C∗-simple. Recall that V is
defined as the group of piecewise linear bijections of [0, 1) with finitely many points
of non differentiability, all of which are dyadic rational numbers. Such a function f
is entirely determined by two partitions

[0, 1) =
n∐
i=1

Ii =
n∐
i=1

Ji

and a bijection
(

I1 ... In
Jσ(1) ... Jσ(n)

)
. The intervals Ii and Ji are of the type

[a, a + 2−n), with a dyadic rational in [0, 1). Then f is defined on Ii as the
only linear increasing function applying Ii to Jσ(i).

In order to prove that V is C∗-simple, we will:
• realize V as a countable group of homeomorphisms of the Cantor set;

13



• use the following result of Le Boudec and Matte-Bon ([66], thm 3.7):

Theorem 7.1. Let X be a Hausdorff locally compact space and Γ be a
countable subgroup of Homeo(X). Suppose that for every non empty open
subset U ⊂ X, the rigid stabilizer

ΓU = {γ ∈ Γ | γx = x ∀x /∈ U}
is non amenable. Then Γ is C∗-simple.

Let G be an ample groupoid with compact base space. We also always suppsose
that groupoids are second countable, Hausdorff and locally compact. Recall that a
bisection U ⊂ G is a set such that s and r are homoeomorphisms when restricted
to U . In particular, any open bisection U induces a partial homeomorphism

αU

{
s(U) → r(U)

x 7→ r ◦ s−1
|U (x)

The topological full group JGK is defined as the set of bisections U of G such that
s(U) = r(U) = G0. The operations are defined by
e = G0, UV = {gg′ | g ∈ U, g′ ∈ V s.t. s(g) = r(g′)}, U−1 = {g−1 | g ∈ U}.

Recall that a Cantor space is any compact metrizable totally disconnected space
without any isolated points. It is a standard fact that they are all homeomorphic.
A model for Ω is the countable product AX , where

• A is a finite set, often reffered to as the alphabet;
• X is a countable set.

Then elements of Ω are infinite words indexed by X. Denote by Ωf the set of finite
words

Ωf =
∐

finite F⊂X
AF ,

then the topology on Ω is the one generated by the cylinders
Ca = {w ∈ Ω | w(x) = a(x) ∀x ∈ F = supp(a)}.

For finite words a ∈ Ωf , l(a) denotes their length, and if F = N, x ∈ Ω, ax denotes
the concatenation of a and x, i.e. the word obtained by first saying a and then x.

Examples:
(1) Let Γ a countable discrete group acting on a Hausdorff compact space X

by homeomorphisms. Then JX o ΓK consists of the bisections of the type

S =
∐

Ui × {γi}

where X =
∐n
i=1 Ui =

∐n
i=1 γiUi.

(2) Let Z act on the Cantor space Ω = {0, 1}Z by Bernoulli shift
n(ai)i = (ai+n)i ∀n ∈ Z, a ∈ Ω.

Then JΩoZK consists of homeomorphisms φ : Ω→ Ω such that there exists
a continuous function n : Ω→ Z such that

φ(x) = n(x).x ∀x ∈ Ω.
(3) Let Ω = {0, 1}N be another model for the Cantor space. Define T : Ω→ Ω

continuous to be the shift
T (a0, a1, ...) = (a1, a2, ...).

Let G2 be the so-called Cuntz or Renault-Deaconu groupoid defined by
{(x,m− n, y) | x, y ∈ Ω,m, n ∈ N s.t. Tmx = Tny}.
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Exercise: The reduced C∗-algebra of G2 is isomorphic to the Cuntz algebra
O2 = C∗〈s1, s2 | s1s

∗
1 + s2s

∗
2 = 1, s∗1s1 = s∗2s2 = 1〉.

The open sets
Ua,b = {(ax, l(a)− l(b), bx) | x ∈ Ω}

define compact open bisections which cover G2 when a, b run across Ωf .

Then JG2K consists of the bisections of the type

S =
n∐
i=1

Uai,bi

where Ω =
∐
i=1,n Cai

=
∐
i=1,n Cbi

.

If for a ∈ Ωf , Ia = [a, a+ 2−l(a)) ⊂ [0, 1), then JG2K → V∐n
i=1 Uai,bi

7→
(
Ia1 ... Ian

Ib1 ... Ibn

)
is an isomorphism of groups.

•

◦

•

◦

•

◦

S = U0,01
∐
U10,00

∐
U11,1 corresponds to

(
I0 I10 I11
I00 I01 I1

)I0 I10 I11

I00

I01

I1

Figure 3. The isomorphism JG2K ∼= V

The last example realizes V as a countable subgroup of homeomorphsims of Ω. If
U = Ca is a cylinder for a ∈ Ωf , then the rigid stabilizer VU is isomorphic to V .
But V contains a nonabelian free groups, hence is nonamenable. The above theorem
ensures that V is thus C∗-simple.
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