OBSTRUCTION FOR LLP OF FULL GROUP C*-ALGEBRAS, AFTER IOANA, SPAAS & WIERSMA.

CLÉMENT DELL'AIERA

ABSTRACT. This note surveys the talk given on December 17th, 2020 for the Lifting for C^* -algebras seminar ran at UMPA, ENS Lyon.

Contents

1.	Projective characterization of property (T)	1
2.	Almost unitary projective representations and LLP	2
3.	Example	3
References		3

We will present theorem A of [1]. The goal is to show that, in possession of a family of finite dimensional projective representations with asymptotically trivial cocycles, LLP implies the existence of invariant vectors for carefully built representations with same cocyles. Using a projective characterization of property (T) from [3], one can deduce from relative property (T) that the cocyles are ultimately coboundaries. This provides an obstruction for LLP of the full C^* -algebra of $\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z})$.

1. PROJECTIVE CHARACTERIZATION OF PROPERTY (T)

Let G be a discrete countable group. We denote by $\mathbb{P}U(n)$ the quotient of the unitary group U(n) by $\mathbb{T} = U(1)$.

Definition 1.1. A projective representation is given by a group morphism $G \to \mathbb{P}U(n)$.

Any projective representation lifts to a map $\phi: G \to U(n)$ such that there exists a map $c: G \times G \to \mathbb{T}$ satisfying

$$\phi(s)\phi(t) = c(s,t)\phi(st) \quad \forall s, t \in G.$$

Writing the product of three elements in two different ways, we get that the relation

$$c(g,h)c(gh,k)=c(g,hk)c(h,k) \quad \forall g,h,k \in G$$

is satisfied. This is what is called the cocyle relation. If $c(s,t) = b(s)b(t)\overline{b(st)}$ for some map $b: G \to \mathbb{T}$, then $g \mapsto \overline{b(g)}\phi(g)$ is a unitary lift of $G \to \mathbb{P}U(n)$. Such a cocyle is called a coboundary. In a similar manner, two projective representations whose cocyle differ by a coboundary are unitarily equivalent.

Given a cocyle $c \in Z^2(G, \mathbb{T})$, one can always build a projective representation on $\ell^2(G)$ with this cocyle by defining

$$\lambda(g)\delta_s = c(g,s)\delta_{gs}$$

We will refer to this representation as the regular c-representation.

Date: December 21, 2020.

Definition 1.2. The cohomology group $H^2(G, \mathbb{T})$ is defined a the quotient of cocycles $Z^2(G,\mathbb{T})$ by the subgroup of coboundaries $B^2(G,\mathbb{T})$. It classifies projective representations in the sense that the class of their cocyle determines their unitary equivalence class.

Recall that, if $\Lambda < G$ is a subgroup, the pair (Λ, G) is said to have (relative) property (T) if any unitary representation that has almost invariant vectors has a genuine nonzero invariant vector. We can give a characterization of property (T) by projective representations.

If $\rho: G \to U(H)$ and $\sigma \to U(K)$ are two projective representations with cocyles c_{ρ} and c_{σ} , then $\rho \otimes \sigma : G \to U(H \otimes K)$ is also a projective representation with cocycle $c_{\rho}c_{\sigma}$. The contragredient representation H^{\vee} is a projective representation with cocyle \overline{c}_{ρ} .

In particular, the Hilbert-Schmidt operators on a projective representation

$$HS(H) = \{T \in B(H) : Tr(T^*T) < \infty\} \cong H^{\vee} \otimes H$$

is a unitary representation.

Lemma 1.3 (lemma 1.1 [3]). The pair (Λ, G) has (T) if there exists a finite set $F \subset G$ and a positive number $\varepsilon > 0$ such that, for any projective representation $\phi: G \to U(H)$ with cocyle $c \in Z^2(G, \mathbb{T})$, for every vector such that

$$\sup_{g \in F} d(g \cdot \xi, \mathbb{C}\xi) < \varepsilon$$

then there exist $\xi_0 \neq 0$ and $b \in Z^1(G, \mathbb{T})$ satisfying

- ||ξ ξ₀|| < ε,
 ρ(λ)ξ₀ = b(λ)ξ₀ and ∂b = c.

In particular, the restriction $c_{1\Lambda}$ is a coboundary in $B^2(\Lambda, \mathbb{T})$.

Proof. From the almost projectively invariant vector, we get an almost invariant vector $T = \xi^{\vee} \otimes \xi$: there exists a Λ -invariant $T_0 \in HS(H)$ such that $||T - T_0||_2 \leq \varepsilon$. As $T_0^*T_0$ is Λ -invariant, all its spectral projections also are. One of these must satisfy $||p - T|| < \varepsilon$, hence (if small enough), p is unitarily equivalent to T, a rank one projection, i.e. there exists a non zero $\xi_0 \in H$ with $p = \xi_0^{\vee} \otimes \xi_0$. Invariance of p give easily the 1-cocyle.

2. Almost unitary projective representations and LLP

Let us call a family of finite dimensional projective representations with cocycles converging pointwise to 1 a *almost unitary* family. One of the key ideas of [1] is to use almost unitary families to build *-homomorphisms in QWEP C^* -algebras.

Let ω be a non-principal ultrafilter on \mathbb{N} , and define B to be the product C^* algebra $\prod_n M_{d_n}, J^{\omega}$ to be the closed ideal $\{x \in B \mid \lim_{\omega} \tau_n(x_n^* x_n) = 0\}$ and

$$B^{\omega} = B/J^{\omega}.$$

We will show that B^{ω} is QWEP, thus Kirchberg's theorem (see [2]) ensures that any ucp map from a separable LLP C^* -algebra to B^{ω} ucp lifts.

If $\phi_n : G \to U(d_n)$ is an almost unitary family, as

$$\|\phi_n(s)\phi_n(t) - \phi_n(st)\|_{2,\tau_n} = |c_n(s,t) - 1| \to 0,$$

the map $g \mapsto (\phi_n(g))_n \in B$ defines a multiplicative map, thus defines a *homomorphism

$$C^*(G) \to B^\omega$$

Proposition 2.1 (Theorem A [1]). Let ϕ_n be an almost unitary family of finite dimensional projective representations. If $C^*(G)$ has the LLP, and there is a subgroup $\Lambda < G$ such that (Λ, G) has (T), then the restrictions of the cocycles to Λ are coboundaries:

$$[c_{|\Lambda}] \in B^2(\Lambda, \mathbb{T})$$

Proof. Let us show that we can build projective representations with same cocyle, that admits almost invariant vectors. Since C^*G has the LLP, the associated *-morphism $\phi: C^*G \to B^{\omega}$ lifts to a ucp map

$$\Psi: C^*G \to B.$$

Evaluating at the n^{th} -spot, we get $\lim_{\omega} ||\Psi_n(g) - \phi_n(g)||_2 = 0$. Apply Stinespring theorem to lift Ψ_n to a genuine representation

$$\rho_n: C^*G \to B(H_n)$$

such that $\Psi_n(g) = p_n \rho_n(g) p_n$ for the projection $p_n : \tilde{H}_n \to H_n$. We consider the representation $\rho_n^{\vee} \otimes \phi_n$ on $\tilde{H}_n^{\vee} \otimes H_n$: it is a projective representation with cocyle c_n . Then

$$\frac{\|g \cdot p_n - p_n\|_{2,Tr}}{\|p_n\|_{2,Tr}} = 2(1 - Re \ \tau_n(\Psi_n(g)^* \rho_n(g))) \le 2\|\Psi_n(g) - \phi_n(g)\|_{2,\tau_n} \to 0.$$

Thus the representation $HS(\tilde{H}_n, H_n)$, a projective representation with cocyle c_n , has almost invariant vectors. The lemma above ensures that the restricted cocyles are coboundaries by property (T).

3. Example

On $\Lambda = \mathbb{Z}^2$, define c(x, y) = det(x|y) and $c_n(x, y) = e^{i\frac{\pi}{n}c(x,y)}$. Let Γ be a non amenable subgroup of $SL(2,\mathbb{Z})$, and $G = \Lambda \rtimes \Gamma$. Extend c_n to G by

$$c_n(g,g') = c_n(x,\gamma \cdot x') \quad \forall g = (x,\gamma), g' = (x',\gamma') \in G.$$

Then these cocycles factorize through the finite subgroup of $\mathbb{Z}/n\mathbb{Z}^2 \rtimes SL(2,\mathbb{Z}/n\mathbb{Z})$, image of G under the quotient map. We can compose the regular c_n -representations with the quotient map to get an almost unitary family of finite dimensional projective representation

$$G \to U(\ell^2(G(n)))$$

On an abelian group, any coboundary is symmetric, and the c_n are antisymmetric. The cocyle restricted to Λ cannot be coboundaries and the pair has property (T), thus $C^*(G)$ cannot have LLP.

References

- Adrian Ioana, Pieter Spaas, and Matthew Wiersma. Cohomological obstructions to lifting properties for full C*-algebras of property (t) groups. Geometric and Functional Analysis, 30(5):1402–1438, 2020.
- [2] Eberhard Kirchberg. On non-semisplit extensions, tensor products and exactness of groupc*algebras. Inventiones mathematicae, 112(1):449–489, 1993.
- [3] Remus Nicoara, Sorin Popa, and Roman Sasyk. On ii1 factors arising from 2-cocycles of w-rigid groups. Journal of Functional Analysis, 242(1):230–246, 2007.

Department of Mathematics, UMPA, ENS Lyon 46 allée d'Italie 69342 Lyon Cedex 07 FRANCE

Email address: clement.dellaiera@ens-lyon.fr